If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6f^2-81=0
a = 6; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·6·(-81)
Δ = 1944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1944}=\sqrt{324*6}=\sqrt{324}*\sqrt{6}=18\sqrt{6}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{6}}{2*6}=\frac{0-18\sqrt{6}}{12} =-\frac{18\sqrt{6}}{12} =-\frac{3\sqrt{6}}{2} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{6}}{2*6}=\frac{0+18\sqrt{6}}{12} =\frac{18\sqrt{6}}{12} =\frac{3\sqrt{6}}{2} $
| 4+2x+5=3x+11 | | x(x^2+4)+8=8(x^2+x)-6x^2 | | 25x-1=11.18033989 | | -1.7=-0.9p+3.2 | | F(x)=x2+2x | | F(x)=(x(x))+2x | | m-9=2m/7 | | F(x)=x×x+2x | | 12/p+10=9/8 | | 4b-83=2b+19 | | F(x)=x(x)+2x | | -21/7n-6/7=13/7 | | 7x+4=2x+3 | | 63+7m=84 | | x(x^2+2)+1=3(x^2+x)-2x^2 | | 2e=6.4 | | -x^2+5=-4x | | 8=x-47 | | 12x+15x+3=0 | | 3(x)-(-23)=28 | | 10/5/3=x30 | | Y=x2^+11 | | 10(n)=3n-2 | | 51/2=d+1/4 | | 3x(4x+5+1)=0 | | -4(n+8)=-12 | | 1=1/4c | | -4(n-8)=-12 | | b+3.3=8.9 | | b^2=9/49 | | 48-k=29 | | 2*3^x+1=3^3-9^x |